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2.1 Gauge fields or field strengths?

2.1.1 Gauge fields vs field strengths

In lecture 2, we have seen that it is very useful to write Maxwell’s theory of electromag-
netism in terms of differential forms. This not only allows us to study electromagnetism
in a more efficient notation; it also helps us understand how the topological aspects of
space-time play a role in electromagnetism – a role which is rather unclear if we describe
Maxwell’s theory in terms of electric and magnetic fields. Two examples of the role that
topology plays in physics have already been discussed in the exercises: the Dirac monopole
in exercise 2.3, and the Aharonov-Bohm effect in exercise 3.1.

However, if you have done these exercises, you may also feel slightly uneasy. Two differential
forms have played an important role in our description of Maxwell theory:

• the field strength, F , and

• the gauge potential (gauge field), A.

As long as space-time is topologically trivial, say Minkowski space, these two objects
contain exactly the same information: Maxwell’s equations tell us that dF = 0, and then
the Poincaré lemma tells us that this implies F = dA. Thus, every physically possible field
strength arises from some gauge potential. Of course, there are then still multiple gauge
fields that can lead to the same field strenth F , but using the Poincaré lemma once again
(see exercise 3. part (ib) ), we know that two such gauge fields are always related by a
gauge transformation, A1−A2 = dΛ. Therefore, on a topologically trivial space, there are
two fully equivalent ways to describe field configurations: as

The set of closed field strengths F : Ω2
cl(M)

and as

The set of gauge fields A up to gauge transformations: Ω1(M)/dΩ0(M)

1



So far, so good, but from the two examples we have seen in the exercises, it has become clear
that on a topologically nontrivial space, these two descriptions are not quite equivalent.
And so the question arises: which of the two descriptions above is the physically correct
one? The answer will be: neither! In lecture 3 it was already mentioned that the fully
correct way to describe gauge fields is in terms of connections on principle bundles, and
this reasoning will be continued from a mathematical perspective in the next lecture. For
now, however, we want to see exacty what goes wrong when we stick to the language
of differential forms and cohomology on space-time itself. This turns out to be a very
useful exercise, which clearly shows the virtues and limitations of the purely cohomological
description of gauge theories.

2.1.2 A useful sequence

To see that neither one-forms nor two forms are a perfect description of electromagnetic
field configurations, let us look at the exact sequence of maps that was introduced in
exercise 3.1:

0
f0−→ H1

dR(M)
f1−→ Ω1(M)/dΩ0(M)

f2−→ Ω2
cl(M)

f3−→ H2
dR(M)

f4−→ 0. (2.1)

Here, we have the following maps:

• f0 is the inclusion map,

• f1 is also inclusion: the equivalence class [A] maps to [A] for any closed 1-form A,

• f2 is induced by the exterior derivative: [A] maps to dA,

• f3 is the standard map from closed forms to cohomology: F maps to [F ],

• f4 is the projection to 0.

In exercise 3.1, you have convinced yourself that all of these maps are well-defined, and
that the sequence is exact: im(fn) = ker(fn+1) for all pairs of consecutive maps.

Let us now have a closer look at the above sequence for the three cases we are interested
in: topologically trivial space, the Aharonov-Bohm case, and the Dirac monopole.

2.1.3 Topologically trivial space

In the topologically trivial case, both cohomology groups that appear in our exact sequence
are vanishing, and so the sequence simply reduces to

0
f1−→ Ω1(M)/dΩ0(M)

f2−→ Ω2
cl(M)

f3−→ 0. (2.2)

If you’re not used to working with exact sequences, it may be useful to spell out what
exactness means at the different nodes:
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• The image of f1 must equal the kernel of f2. Now the image of f1 is clearly {0}, so
the kernel of f2 is {0}. That is: no two different elements map to the same element:
f2 is injective.

• The image of f2 must equal the kernel of f3. Now the kernal of f3 is clearly the full
Ω2

cl(M), so the image of f2 is Ω2
cl(M). That is: every element is in the image: f2 is

surjective.

If a map (in this case f2 is both injective and surjective, it is of course bijective: the two
spaces under consideration are isomorphic. That is, they are really “the same space”:

Ω1(M)/dΩ0(M) ∼= Ω2
cl(M) (2.3)

This is nothing but what we said in the introduction to this lecture: we may just as well
describe field configurations on a topologically trivial space using either construction: as
gauge fields up to gauge transformations, [A] ∈ Ω1(M)/dΩ0(M) or as closed field strengths,
F ∈ Ω2

cl(M).

2.1.4 The Aharonov-Bohm configuration

Next, let us recall the situation of exercise 3.1: the Aharonov-Bohm effect. Here, we are in
a situation where H1

dR(M) is nontrivial. This can be achieved for example by introdicing
into our space a long (in theory: infinitely long) solenoid with circular cross section of
radius R. Inside the solenoid a magnetic field is present. Let us say the solenoid extends
in the z-direction, and inside the solenoid there is a constant magnetic field in that same
direction, Bz. Outside the solenoid, all electric and magnetic fields are zero. Thus, we
have a field strength

r ≤ R : F = −Bzdx ∧ dy,
r > R : F = 0. (2.4)

As a simple exercise, you may convince yourself that if we use polar coordinates (r, θ)
instead of (x, y), the field strength for r ≤ R may be written as F = dA with

r ≤ R : A = −1

2
Bzr2 dθ. (2.5)

As a result, it makes sense to choose

r > R : A = −1

2
BzR2 dθ, (2.6)

which is constant, so that indeed F = dA = 0 for r > R. As another consistency check,
note that for a 1-cycle γ surrounding the solenoid, we have∫

γ

A = −πR2Bz =

∫
D

F (2.7)
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where D is the disk-shaped two-cycle that is bounded by γ, and we can compute using
either (2.6) or (2.4). That is: our setup is (of course) consistent with Stokes’ theorem.

So far, our space is not topologically nontrivial yet, but now we can note that as long as we
are only interested in the outside of the solenoid, we may just as well shrink it to zero size,
and consider a gauge field of the form (2.6) for any (x, y) 6= (0, 0). Of course, at the line
(x, y) = (0, 0) we now have a problem, as A ∼ dθ is ill-defined there. This can be resolved
by removing this line from our space alltogether, so that A becomes well-defined again. Of
course, the “cost” is that we have now made our space topologically nontrivial: there is
now a closed 1-cycle γ which is no longer the boundary of any 2-cycle, and therefore by De
Rham’s theorem, H1

dR(M) 6= 0. In fact, it is not hard to guess what the nontrivial element
of H1

dR(M) corresponding to γ is: it is simply the one-form dθ, which is indeed closed but
not exact. (Note that it can not be written as d acting on the 0-form “θ”, as the latter is
not a well-defined, single-valued function.)

Some further thought shows that in our example we still have that H2
dR(M) = 0, so that

now our exact sequence (2.1) becomes

0
f0−→ H1

dR(M)
f1−→ Ω1(M)/dΩ0(M)

f2−→ Ω2
cl(M)

f3−→ 0. (2.8)

So now we have an exact sequence containing three nontrivial terms. Such a sequence is
called a short exact sequence in mathematics, and it is a construction one encounters over
and over again. Again, if you have never encountered such sequences, it is useful to spell
out what exactness of such a sequence means. Here, in particular, it is useful to recall that
for any linear map f between vector spaces, we have that the image is isomorphic to the
domain modulo the kernel:

im(f) ∼= dom(f)/ ker(f) (2.9)

In fact, this statement is not only true for vector spaces; it holds in many different categories
of objects, which is why short exact sequences are so useful in mathematics. Let us now
apply this statement to the map f2, and also use exactness of our sequence:

• im(f2) = ker(f3) = Ω2
cl(M), and

• ker(f2) = im(f1), which is isomorphic to the full H1
dR(M) by yet another (easier)

application of (2.9), this time on f1.

Thus, using exactness, (2.9) for f2 reduces to

Ω2
cl(M) ∼=

Ω1(M)/dΩ0(M)

H1
dR(M)

. (2.10)

In words: the space of closed two-forms F is strictly smaller that the space of gauge fields
up to gauge transformations: it is exactly gauge fields of the form A ∼ dθ that the field
strength “does not see”. Yet the presence of such gauge fields can be measured (for example
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by measuring the phase shift of light passing along both sides of the solenoid), and so it
seems that our description of nature in terms of 1-forms A is richer and more physical than
a description in terms of 2-forms F .

While the general spirit of this conclusion is correct, it is not the whole story – as will
become clear by studying our final example, the Dirac monopole.

2.1.5 The Dirac monopole

In the case of the Dirac monopole, we are essentially in the opposite situation: here, we
removed a single point (as opposed to a full line) from three-dimensional space1. As a
result, now any closed 1-cycle can be viewed as the boundary of a 2-cycle (one can always
draw a disk-like shape that “misses” the excluded point), but now there is a closed 2-cycle
that can not be viewed as the boundary of a 3-cycle: the sphere (or anything homotopic
to it) surrounding the removed point.

Thus, from De Rham’s theorem, we now know that H1
dR(M) = 0, but that H2

dR(M) is
nontrivial. In fact, there is only one nontrivial closed 2-cycle, and therefore H2

dR(M) = R:
it is generated exactly by the two-form

F = sin θdθ ∧ dφ (2.11)

that we studied in exercise 1.3.

If we once again write down our favorite exact sequence (2.1), we therefore have

0
f1−→ Ω1(M)/dΩ0(M)

f2−→ Ω2
cl(M)

f3−→ H2
dR(M)

f4−→ 0. (2.12)

Again, we find a short exact sequence, and therefore we can immediately use the same
result as in the previous example for this sequence: we find

H2
dR(M) ∼=

Ω2
cl(M)

Ω1(M)/dΩ0(M)
. (2.13)

As the left hand side is nonzero, we see that now the set of closed 2-forms F is strictly
larger than the space of gauge fields up to gauge transformations. It seems that now F
contains more information than A!

The reason for this conclusion is clear: since our space is topologically nontrivial, and since
the nontriviality shows up exactly in the cohomology of 2-forms, Maxwell’s equation dF = 0
no longer implies that F = dA. As a result, we should no longer be all that interested in
the space of all gauge fields up to gauge transformations: these only parameterize part of

1Note that in our entire discussion, we can essentially forget about the time-direction of space-time, as
all of our field configurations are constant in time.

5



the allowed field configurations. Somehow, we should consider a more broad definition of
“gauge field” that also incorporates the monopole-like field configurations that now exist.

In exercise 1.3, we saw a somewhat cumbersome way to describe such “more general gauge
fields”: we cut our space in two (topologically trivial) halves, studied gauge fields on the
individual halves, and then glued the halves together – but in such a way that the glueing
itself could be done up to gauge transformations. In the rest of this lecture and in particular
the next one, we will formalize this idea more. As we will see, this will require some extra
technical equipment: we must stop viewing the gauge field A as a (globally defined) one-
form, and we must start using the laguage of fibre bundles. These fibre bundles will be
equipped with gauge-field-like objects called connections, and when the dust settles, we
will discover that those connections are the “correct” way to think about the gauge field A,
in such a way that one can now describe all situations that have appeared in this section.
(As well as the even more general situation where both H1

dR(M) and H2
dR(M) are nonzero.)

In the next lecture, we will introduce fibre bundles and connections with some mathematical
rigor. As a warm-up, in the rest of this lecture we want to get a better feeling for how
these objects arise in physics. It will turn out that for this purpose, our simple example of
Maxwell theory is in fact a bit too simple: we will need to study a broader class of theories
called Yang-Mills theories.

2.2 Yang-Mills theory

2.2.1 Gauge fields and covariant derivatives

To understand the broader definition of our gauge field, let us discuss a seemingly rather
different way in which gauge fields can arise in physics. As a toy model, we consider a
quantum field theory where the field is a complex scalar field φ(x). What kind of action
could such a field have? Of course, we are free to choose any functional as the action, but
in practice most field theories follow the “kinetic energy minus potential energy” recipe
that we have seen before. The kinetic energy term would contain two factors of the time
derivative of φ(x) (kinetic energy is proportional to velocity squared); since moreover we
want energy to be a real quantity, and we want our theory to be relativistic (so that
time derivatives appear on an equal footing with spatial derivatives) we naturally arrive
at something like

S ∼
∫
ηµν∂µφ

∗(x)∂νφ(x), (2.14)

where ∗ denotes complex conjugation. As for the potential energy term, we of course have
a lot of freedom, though the requirement that the energy is real remains. Let us take the
simplest nontrivial case, where V (x) ∼ φ∗(x)φ(x) and consider

S ∼
∫ (

ηµν∂µφ
∗(x)∂νφ(x)−mφ∗(x)φ(x)

)
d4x, (2.15)
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with m some constant which for our purposes is irrelevant. (It turns out to be related
to the mass of the excitations of the quantum field.) In fact, we could have added any
function of φ∗φ; all arguments below will remain unchanged.

To get a grip on a quantum field theory, it is always useful to start by finding the symmetries
of the model: operations we can apply to the field configurations such that the action
remains unchanged. For our toy action, such a symmetry is for example the global phase
rotation

φ(x)→ eiΛφ(x) (2.16)

for any Λ ∈ R. We call this a global phase rotation because the phase Λ is independent of
the position x. What happens if we instead consider a local phase rotation? This would
mean we would change the field as

φ(x)→ eiΛ(x)φ(x). (2.17)

Clearly, the combination φ∗φ is still invariant under this operation, but this is not the case
for the derivative terms. In fact, we have

∂µφ(x)→ eiΛ(x)

(
∂µφ(x) + i∂µΛ(x)φ(x)

)
. (2.18)

Clearly because of the presence of the second term in this transformation, the term
ηµν∂µφ

∗(x)∂νφ(x) is not invariant. There is, however, a way to solve this issue. That
way is to introduce the covariant derivative,

Dµφ(x) ≡ ∂µφ(x)− iAµ(x)φ(x), (2.19)

where at this point Aµ(x) is a new field about which we have not specified anything other
than the fact that it has a lower µ-index. (Of course, the notation strongly suggests the
interpretation of Aµ we are working towards.) If we apply our local phase rotation to the
above term, we find that

Dµφ(x)→ eiΛ(x)

(
∂µφ(x) + i∂µΛ(x)φ(x)− iÃµ(x)φ(x)

)
. (2.20)

In this expression, we have written Ãµ, since we have not specified yet how our would-be
symmetry acts on Aµ(x) – we simply gave the field after the transformation the name Ãµ.
However, now we see that if we impose that Aµ transforms as

Aµ(x)→ Ãµ(x) ≡ Aµ(x) + ∂µΛ(x), (2.21)

we get that
Dµφ(x)→ eiΛ(x)Dµφ(x), (2.22)

and therefore
ηµνDµφ

∗(x)Dνφ(x) (2.23)
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is invariant. The transformation (2.21) looks familiar: it is exactly a gauge transformation!
That is, if we interpret A = Aµ(x)dxµ as a 1-form, the gauge transformation is simply

A→ A+ dΛ (2.24)

where we interpret the function Λ(x) as a 0-form.

The above observation allows us to construct a broad class of interesting theories. Of
course, now that we have discovered that it is interesting to “couple” the complex scalar
field φ(x) to a gauge field Aµ(x), we may as well study theories where Aµ(x) itself has a
kinetic term so that it becomes a “dynamical” field. Of course, this kinetic term for A
must be gauge invariant as well, and so the natural choice is to construct the kinetic term
out of F = dA. As we mentioned before, the term F ∧ F does not lead to any interesting
physics, and so we are led to consider a kinetic term of the form F ∧?F – that is, we study
field theories with an action2

S[A, φ] =

∫ (
F ∧ ?F + ηµνDµφ

∗Dνφ+ V (φ∗φ)

)
. (2.25)

In a very different way, we have found back the action for Maxwell theory for A, now
“coupled” to an action for a scalar field φ(x). It turns out that in nature, this is exactly how
the electromagnetic field interacts with other, charged fields: through covariant derivatives.

2.2.2 Covariant derivatives and parallel transport

The fact that a gauge field A shows up in the covariant derivative leads us to a very
different way of interpreting gauge fields: as being related to parallel transport. This will
be made more explicit from a mathematical perspective in the next lecture, but let us
already give the basic ideas here. To simplify notation, let us now look at a space which is
simply R, parameterized by a single coordinate x. To begin with, recall that the ordinary
derivative can be used as a “generator” for translation of functions: for a function φ(x),
using a Taylor series, we have that

φ(x+ ε) = φ(x) + ε
dφ

dx
+

1

2
ε2
d2φ

dx2
+ . . .

= eε
d
dxφ(x). (2.26)

Thus, the derivative “transports” the function value. Is there a similar interpretation for
the covariant derivative?

To answer this question, let us look at constant functions in particular: functions for which

d

dx
φ(x) = 0 (2.27)

2Note the slightly awkward notation here, where in the first term we integrate a 4-form (which can be
done without making a choice of coordinates), whereas the integration of the other two terms should really
contain a d4x and is coordinate-dependent in general.
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for every x. We want to figure out what the analogous statement Dµφ(x) = 0 for the
covariant derivative means.

To this end, we must realize that there are two different ways to think of a function
φ : R → C. The first one is the usual way: there is a complex plane C, and every point
x ∈ R is mapped to some point y = φ(x) ∈ C. But there is a slightly different way to
think about functions: we can think of φ as being defined by a subset

Σ ⊂ R× C (2.28)

such that for every x ∈ R there is exactly one element of the form (x, y) ∈ Σ, and then we
denote y ≡ φ(x). Of course, this definition of a function is fully equivalent to the previous
one, but note the “moral” difference: every point x ∈ R now has “its own” complex plane
Cx attached to it (consisting of all points of the form (x, z) for some z), and the point x
is mapped to one point in that particular plane Cx. This construction, where over every
point in some base space (here: R) we have a copy of some given fibre (here: C) can be
generalized into the concept of a fibre bundle that we began to discuss in the previous
lecture.

For now, let us note that we can interpret our (ordinary) constant function φ(x) in this
language as follows. Say we start with a single point (x0, y0) ∈ R × C. The set Σ for
the constant function f(x) = y0 now contains all points (x, y0) in Σ, and therefore it tells
us how to parallel transport the point (x0, y0) along the R-direction to points (x, y0) in
different fibers Cx.

However, recall that we want to study topology, and therefore we want to make all of our
constructions depend on specific choices of coordinates as little as possible. For example,
instead of using a variable zx to parameterize a certain Cx, we may want to use a different
variable z′x = eiΛ(x)zx. Then, of course, our function f(x), which was constant in the
variables zx, is no longer constant in the variables z′x.

The upshot of this remark is the following: the related notions of being “constant” and of
“parallel transporting”, require an extra piece of information: specific functions are only
constant when we use a specific coordinate system on our fibers. The requirement

d

dx
f(x) = 0 (2.29)

is therefore a very coordinate dependent statement! However, as we have seen, for the
requirement

Dxφ(x) = 0 (2.30)

where we have used a covariant derivative, this is not the case: if we change fibre coordinates
by a coordinate dependent phase eiΛ(x), the left hand side only changes by an overall phase,
and so this statement is still true in the new coordinates. This is the interpretation of the
gauge field Aµ(x) that we were looking for: it gives us a way to define parallel transport
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and constant functions (and, later on, other constant quantities like vectors, spinors, and
so on) in a way which does not depend on local phase rotations of the fibre. An object
which does this is called a connection in mathematics; the general concept of connections
will be introduced in the next lecture.

Before proceeding, let us make a final remark about the above interpretation of the gauge
field. The reader may wonder: why all this hassle? Couldn’t we just have stayed with our
original concept where a function maps R into a single space like C, with fixed coordinates
chosen once and for all? The reason that this turns out not to be sufficient for physics
purposes is that fields in physics are not always ordinary functions. Often, we may parallel
transport a field value at a particular point around some topologically nontrivial closed
loop in space-time, and not end up at the point where we started. As a toy model, our
space could be a circle S1, and our field could take values in a fibre Rx at each x ∈ S1,
but if we parallel transport (x, y) around the circle we might end up in the point (x,−y).
The fields satisfying this condition may be viewed as continuous “functions” on [0, 1]×R,
but with (0, y) identified with (1,−y). That is, our “functions” (called sections in proper
mathematic language) are subsets of a Möbius strip, which clearly is not topologically
equivalent to S1 ×R. This situation occurs in physics quite often: field configurations are
sections of “bundles” which are not simply a product of the base space with a given fibre,
and as soon as this happens, we need to carefully determine what parallel transport means,
and so we need a connection: a gauge field.

2.2.3 Field strength and curvature

Our example in the previous section, where we only have one “space”-dimension R, is really
rather simple. If we have two spatial dimensions, say parameterized by x1 and x2, we can
consider parallel transport in either direction. Now of course, these operations need not
commute. Compare this to the transport of a tangent vector along, say, a sphere. A little
experimenting shows that because the sphere is curved, transporting in one direction and
then another need not give the same result as transporting along the same directions in the
opposite order. In fact, if you know general relativity, you may know that this difference is
exactly what the Riemann curvature tensor Rµ

νρσ measures: if the two directions in which
we transport are themselves given by tangent vectors Xρ and Y σ, then the matrix

Aµν = Rµ
νρσX

ρY σ (2.31)

gives (to first order in the length of the vectors) the rotation that relates a vector Zν

parallel transported along X and then along Y to the same vector parallel transported
along Y and then along X.

Something very similar turns out to happen in the case we studied above. Let us now
consider two different spatial directions, labeled by xµ and xν . Then the covariant derivative
Dµ generates parallel transport in the xν-direction, and similarly for Dν in the y-direction.
If we want to transport in both directions, we can choose two orders, and the differentce
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between those operations is of course [Dµ, Dν ]φ(x). A short computation (see exercise 4.1)
now shows that

[Dµ, Dν ]φ(x) = −iFµνφ(x) (2.32)

That is, the field strength F measures the analogue of “curvature” for the parallel transport
defined by the gauge field (connection) Aµ. This observation will play a role in the final
part of this lecture, where we introduce Yang-Mills theories.

2.2.4 Covariant derivatives for more general gauge groups

To recover the Maxwell gauge field, we studied a complex scalar field φ(x) and its covariant
derivative under U(1) phase rotations eiΛ(x). This is a simple case of a much more generic
situation: we can have a vector of fields, φi(x), on which a more general (matrix) Lie group
acts – think of SO(N), U(N), Sp(2N), etc. This is a situation we encounter a lot in physics:
for example, the fundamental forces act on fields which transform as representations of
SU(3) for the strong nuclear force, SU(2) for the weak nuclear force, and – as we have
seen – U(1) for the electromagnetic force.

Therefore, it is an interesting question whether we can also introduce covariant derivatives
for this more general case. That is, suppose we have transormations of the form

φi(x)→
(
eic

a(x)Ta
)i
j
φj(x) (2.33)

where Ta are the generators of the Lie algebra for the group we are interested in, and ca(x)
are position-dependent factors3. The entire computation is now exactly equivalent to the
U(1) case, and we find that the covariant derivative

Dµφ
i(x) = ∂µφ

i(x)− iAaµ(x)(Ta)
i
jφ

j(x) (2.34)

transforms in the same way as the field itself,

Dµφ
i(x)→

(
eic

a(x)Ta
)i
j
Dµφ

j(x), (2.35)

provided Aaµ(x) transforms as

Aaµ(x)→ g(x)Aaµ(x)g−1(x) + ∂µg(x) · g−1(x), (2.36)

where g(x) = eic
a(x)Ta is the group element that also appears in (2.33).

What type of object does this define? Note that we can remove all indices of A by consid-
ering

A(x) ≡ Aaµ(x)Tadx
µ. (2.37)

3We use “physics notation” here, where Lie group elements are obtained by exponentiating Lie algebra
elements with a factor of i, analogous to the U(1) example.
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That is: A is a 1-form, but the coefficients of the different dxµ are no longer x-dependent
numbers: they have become x-dependent Lie algebra elements. We therefore say that A is
a Lie algebra valued 1-form. In the next lecture, we will see that again, these objects play
an important role in the theory of fibre bundles, where they describe the connections that
define parallel transport.

2.2.5 Yang-Mills theory

Using covariant derivatives, we can once again construct field theory actions that are
invariant under local Lie group symmetries. For example, suppose there is some bilinear
form

Q(φ, χ) ≡ Gabφ
aχb (2.38)

which is invariant if we act on both φ and χ with elements of our Lie group:

Q(Uφ, Uχ) = Q(φ, χ) (2.39)

In fact, many Lie groups can be defined through the existence of such a form: SO(N), for
example, consists of all linear transformations U such that the bilinear form with Gab = δab
is invariant under U .

If we have such a bilinear form, described by some matrix Gab, we can easily construct
symmetric actions: any action of the form∫

d4x

(
Gabη

µνDµφ
aDνφ

b − V (Gabφ
aφb)

)
(2.40)

is now invariant under local Lie group transformations.

Can we also construct a kinetic term for the gauge field A(x) itself in this case, just like
we recovered Maxwell’s action from the U(1) covariant derivative? The answer is yes, and
the easiest way to construct such a kinetic term is by recalling that in the U(1) case, the
commutator of two covariant derivatives gave us the field strength that we could build the
action from. It turns out the same thing is true here, but that the field strength looks
slightly different: one can compute (see exercise 4.1) that again

[Dµ, Dν ]φ
i(x) = −iF a

µν(x)Taφ(x) (2.41)

but that now the field strength F has an extra term:

F a
µν(x) = ∂µAν(x)− ∂νAµ(x)− ifabcAbµ(x)Acnu(x), (2.42)

where fabc are the structure constants of the Lie algebra, defined from the commutators of
its generators:

[Tb, Tc] = fabcTa. (2.43)

12



Again, we can write F as a Lie-algebra valued two-form F (x) = F a
µν(x)Tadx

µ ∧ dxν , which
(exercise 4.1) makes (2.42) look much nicer:

F = dA− iA ∧ A (2.44)

Here, the wedge product is extended to also include the multiplication of the generators
Ta; this is the reason that A ∧ A is no longer zero (as it was for ordinary 1-forms), as two
such generators generically do not commute.

Constructing an action for the gauge field now goes along exactly the same lines as for the
Maxwell field: the natural action one can write down is

S ∼
∫

Tr (F ∧ ?F ) (2.45)

or, in terms of components,

S ∼
∫

Tr (F µνFµν). (2.46)

The only difference now is that we need a trace operator (which for matrix groups is the
ordinary matrix trace) to turn the Lie algebra-valued forms in the action into ordinary
numbers. This action is called the Yang-Mills action; it plays an essential role in particle
physics, as it describes the behaviour of the gauge fields for all fundamental forces between
particles except for gravity.
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